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ABSTRACT: Oxidative stress is produced by the reactive oxygen/nitrogen species 

(ROS/RNS) which involves mitochondrial dysfunction.  Mitochondria is one of the main 

sources of oxidative stress, as it utilizes the oxygen for the energy production. 

Overproduction of ROS, results in oxidative stress, which injures the cell structures, 

lipids, proteins, and DNA. Various oxidative events implicated in many diseases is due 

to oxidative stress which include alteration in mitochondrial proteins, mitochondrial 

lipids and mitochondrial DNA, which in turn leads to damage nerve cells as they are 

metabolically very active. Reactive oxygen/nitrogen species at moderate concentrations 

also play roles in normal physiology of many processes like signalling pathways, 

induction of mitogenic response and in defence against infectious pathogens. Oxidative 

stress has been considered to be the main cause in the etiology of neurodegenerative 

diseases, which includes Parkinson’s disease (PD) and Alzheimer’s disease (AD).  

Recent research on the dysfunction and function of PD associated genes has provided 

new fundamental insights into biochemical pathways that are linked with the disease 

process This review includes source of free radical generation, mitochondrial 

dysfunction and the mechanism involved in neurodegenerative diseases which involves 

both PD as well as in AD.  This makes the mitochondria, the main target of PD and AD 

research. 
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INTRODUCTION 

Over the last several decades there has been great progress with 

respect to understand what triggers most neurodegenerative 

diseases. These reviews include both disease specific as well as 

more general reviews that focus on a pathway or a process that 

could lead to neurodegeneration [1]. In the human body, it is 

estimated that cell division and metabolism occur extensively till 

about 25 years of age.  After this age, subsidiary products of 

metabolism and cell damage accumulate, and the phenotypes of 

ageing appear, causing disease formation. Among these age-

related diseases, neurodegenerative diseases have drawn a lot of 

attention due to their irreversibility, lack of effective treatment, 

and accompanied social and economic burdens. In this review, we 

discuss the pathogenesis of age-related neurodegenerative 

diseases including Alzheimer's disease and Parkinson's disease 

[2].   

Oxidative stress occurs due to metabolic reactions that use oxygen 

and represents, disturbance in the equilibrium status of pro-

oxidant and antioxidant reactions in living organisms. The excess 

ROS damages cellular lipids, proteins, or DNA inhibiting their 

normal function. Because of this, oxidative stress has been 

implicated in a number of human diseases as well as in the ageing 

process [3].  The delicate balance between beneficial and harmful 

effects of free radicals is a very important aspect of living 

organisms and is achieved by mechanisms called “redox 

regulation”. Redox regulation protects living organisms from 

various oxidative stresses and maintains “redox homeostasis” by 

controlling the redox status of the living organisms [4].  Brain is 

thus believed to be particularly susceptible to the damaging effects 

of ROS. In cases of AD and PD various levels of ROS damage 

have been reported within the definite brain region that undergoes 

selective neurodegeneration.  
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Like lipid peroxidation markers 4-hydroxynonenal and 

malondialdehyde are identified in the cortex and hippocampus of 

patients with AD and the substantia nigra of patients with PD [5-

9]. Oxidative stress plays a major part in the development of 

various diseases such as arthritis, cancer, autoimmune disorders, 

aging, cardiovascular and neurodegenerative diseases. The human 

body has several mechanisms to combat oxidative stress by 

producing antioxidants that are either naturally produced, or 

externally supplied through external sources foods or 

supplements. Endogenous and exogenous antioxidants act as free 

radical scavengers by preventing and repairing damages caused by 

ROS and RNS, and therefore can boost the immune defence and 

lower the risk of cancer and various degenerative diseases [10-14].   

Various evidence has shown the involvement of cellular oxidants 

in the maintenance of “REDOX HOMEOSTASIS” in the redox 

regulation of normal physiological functions as well as 

pathogenesis of various diseases, including cancer, ischemia/ 

reperfusion injury, inflammatory diseases, diabetes mellitus, 

neurodegenerative disorders and ageing. The mitochondrial 

electron transport chain is one of the important reservoirs of ATP 

in the mammalian cell and is thus essential for life. During energy 

transduction, a small number of electrons “leak” to oxygen 

prematurely, forming the oxygen free radical superoxide, which 

has been concerned to be the cause of pathophysiology of a range 

of diseases [15, 16].  

Nitric oxide (NO) is a reactive radical that acts as an important 

biological signalling oxidative molecule in a large variety of 

diverse physiological processes like neurotransmission, defence 

mechanisms, smooth muscle relaxation, blood pressure 

regulation, and immune regulation [17]. Overproduction of 

reactive nitrogen species is called nitrosative stress [18, 19]. It 

occurs when the generation of reactive nitrogen species in a 

system exceeds the system’s ability to eliminate and neutralize 

them. Nitrosative stress would lead to nitrosylation reactions 

which can deteriorate the structure of the proteins and as such 

inhibit the normal functioning of the protein. 

 

Fig. 1: This schematic representation shows the effect of free 

radicals on biological molecules like proteins, DNA and lipids. 

Free radicals react with membrane lipids, proteins and nucleic 

acids and as such causes cell injury 

Oxidative stress and Alzheimer disease 

Alzheimer’s disease causes dementia and is the most common 

neurodegenerative disease which occurs in elderly. It has been 

evident from different studies that oxidative stress is an important 

factor that leads to the initiation and progression of AD. 

Mitochondrial dysfunction and aberrant accumulation of 

transition metals may lead to excess accumulation of reactive 

oxygen species and the accumulation of abnormal Abeta or tau- 

appear to promote redox imbalance. This leads to oxidative stress 

which in turn causes Abeta or tau induced neurotoxicity. 

Alzheimer’s disease is the most common cause of dementia in 

elderly adults. It is estimated that 10% of the world’s population 

aged more than 60–65 years could currently be affected by AD, 

and that in the next 20 years, there could be more than 30 million 

people affected by this disease. Vascular and metabolic 

dysfunctions and mitochondrial failure are now believed to be 

contributors to AD pathogenesis. Vascular dysfunction includes 

reduced cerebral blood flow (CBF), blood–brain barrier (BBB) 

disturbances and cerebral amyloid angiopathy (CAA).  

Mitochondrial failure results in deregulation of Ca+2 homeostasis 

and elevated ROS generation, both of which are linked to 

neurotoxicity. Rapid accumulation of the cation by mitochondria 

is triggered by abnormal increase in cytosolic Ca+2 levels that is 

important in CNS given the role of Ca+2 in normal 

neurotransmission, long and short-term plasticity and regulation 

of gene transcription [20-26]. Moreover, deregulation in Ca+2 

homeostasis can potentiate excitotoxicity, a phenomenon 

intimately associated with neurodegeneration [20, 27].   Decreased 

age-related Ca+2 buffering capacity has been shown in CNS; 

mitochondria being involved in this deregulated homeostasis [28].   

The interaction between oxidative stress and neuroinflammation 

leads to amyloid-b (Ab) generation. The deposition of Ab peptide 

in the brain generates a cascade of pathological events. 

Mitochondrial dysfunction and oxidative stress 

Mitochondrial genome can be affected by diseases, ROS and RNS 

and mutations (some human diseases are associated with 

mitochondrial mutations). Mitochondrial DNA damage can lead 

to decreased expression of mRNA, which in turn effect the protein 

expression (decreased protein expression) which would affect the 

protein of ETC as such leads to less ATP formation and increased 

ROS formation. Brain requires a high consumption of oxygen to 

generate adenosine triphosphate (ATP). The antioxidant enzymes 

are superoxide dismutase (SOD), catalase, and glutathione 

peroxidase (GPx). The nonenzymatic antioxidants group is 

composed of the natural molecules glutathione (GSH) and the 

reduced form of nicotin-amide adenine dinucleotide phosphate 

(NADPH), and compounds like ascorbic and lipoic acid, 

polyphenols and carotenoids dietary derived [29]. AD is a disorder 

of the central nervous system (CNS) that results in generalized 

brain atrophy. Clinically, AD is characterized by the gradual and 

progressive loss of memory and other cognitive functions, such as 

the ability to solve everyday problems and emotional control [30-

32]. Twin studies provide insight into the relative contributions of 

genetic and environmental influences on AD and other types of 

dementia [33-35]. Histopathologically studies have shown the 

presence of two specific features: neuritic plaques (NPs) and 

neurofibrillary tangles (NFT) in AD [36-38].  
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An in vitro study showed that Zn+2 quenched Ab-Cu+2 

complexes, promoting an antioxidant function [39]. It has also 

been reported that B-amyloid fibrils leads to the activation of 

tyrosine kinase signaling pathway and as such superoxide 

production in microglia.  

Oxidative stress and Parkinson’s disease  

PD is the second most common neurodegenerative disorder [40], 

affecting approximately 2% of the population over the age of 60 

years and 4% of those over the age of 80 years [41]. The CNS is 

very susceptible to reactive species induced damage [42]  because; 

(a) it consumes a lot of oxygen,  

(b) it has high content of membrane polyunsaturated fatty 

acids which are susceptible to free radical attack,  

(c) it is relatively deficient in oxidative defenses because it 

has poor CAT activity and moderate SOD and GPx 

activities, and;  

(d) high content of iron and ascorbate can be found in some 

regions of the CNS which enables it for the generation of 

more reactive species through the Fenton/Haber Weiss 

reactions. 

Selective loss of the neurons occurs in the PD. Occupational uses 

of pesticides or herbicides, carbon monoxide, exposure to organic 

solvents, carbon disulfide, industrialization, well water, rural 

environment, plant-derived toxins, and viral and bacterial 

infection are all considered to be the causes of PD [43]. Another 

factor which is obviously associated with the PD is aging as it 

leads to the failure of normal cellular-processes as such increase’s 

vulnerability of DAergic neurons [44]. Dopamine neurons are 

exposed to ROS and RNS for their whole lifespan from the 

metabolism of dopamine itself. Dopamine is a relatively unstable 

molecule in nature and undergoes auto-oxidation metabolism in 

the nigro striatal tract system thereby producing ROS [45] and 

auto-oxidation itself may increase with age [46].Oxidative 

deamination of primary MAO produces NH3 and H2O2 with 

established or potential toxicity [47]. Initial evidence showed that 

dopamine levels decline by 50–60% during advanced normal 

aging [48, 49], whereas loss of dopamine neurons in patients with 

PD is 80–90% in the substantia nigra and 40–50% in the ventral 

tegmental area [50]. It has also been suggested that dopamine 

deficiency in normal aging by 110-115 years is sufficient to 

provoke PD symptoms in these individuals [49]. In familial forms 

of PD which are associated with mutations in a number of genes, 

usually leads to the degeneration of nigran neurons. Oxidative 

stress is said to be the main cause of both the types of cases i.e. 

idiopathic and genetic cases of PD. PD patients exhibit high levels 

of oxidized lipids, proteins and DNA and are also associated with 

reduced glutathione (GSH) levels [51-53]. Due to the presence of 

ROS-generating enzymes like tyrosine monoamine oxidase and 

hydroxylase, DAergic neurons are particularly prone to oxidative 

stress. 

Mitochondrial dysfunction and Parkinson’s disease 

Mitochondrial dysfunction is yet another basis of oxidative stress 

which is associated with pathogenesis of PD. Any pathological 

situation which leads to mitochondrial dysfunction can cause a lot 

of increase in ROS.  

This ROS production causes peroxidation of the mitochondrial 

lipids cardiolipin and as such leads to the release of cytochrome c 

in the cytosol which in turn causes apoptosis. As DAergic neurons 

are more ROS-generating intrinsically and susceptible, any event 

which further aggravates oxidative stress can be harmful to the 

cell. Leakage of electrons after the damage to the mitochondrial 

complex I cause ROS generation. Respiratory chain deficient DA 

neurons have been found to be higher in the PD patients than in 

age-matched controls [54]. Lots of evidences about the 

mitochondrial dysfunction related to oxidative stress and DAergic 

cell damage comes from the results that mutations in genes of 

mitochondrial proteins DJ-1, Parkin and PINK, are linked to 

familial forms of Parkinson’s diseases. Cells which are derived 

from patients with parkin gene mutation show decreased Complex 

I activity [55]. Mice deficient in parkin gene has shown reduced 

striatal respiratory chain activity along with oxidative damage 

[56]. DJ-1 is a mitochondrially enriched, redox-sensitive protein 

and an atypical peroxiredoxin like peroxidase that scavenges 

H2O2, and DJ-1 KO mice accumulates more ROS and exhibit 

fragmented mitochondrial phenotype [57].    

CONCLUSION  

Lots of evidences have been provided in this review about the 

importance of mitochondria and oxidative damage it possesses, 

and its relation with the various diseases associated with it. 

Various specific mitochondrial targets that are damaged due to 

oxidative stress are directly responsible for deterioration of 

various cell constituents. This review provides considerable 

information about the different mitochondrial targets in toxic 

oxidative stress. Oxidative stress is an important factor 

contributing to the development of AD. Current research on the 

dysfunction and function of PD associated genes has provided 

new fundamental insights into biochemical pathways that are 

linked with the disease process. Also, these findings established 

that mitochondrial dysfunction is associated with both PD as well 

as in AD, which makes the mitochondria the main target of PD 

and AD research. Oxidative stress is inextricably linked with 

several major pathological processes in AD including 

neurotoxicity and mitochondria dysfunction. Further studies are 

required to exactly target these main pathways to these 

neurodegenerative diseases. 
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