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ABSTRACT
Diabetes mellitus (DM) is a metabolic syndrome that constitutes a major health problem most drugs currently employed in the treatment of type 2

diabetes targeting the peroxisome proliferator-activated receptor (PPARγ) improving increasing prevalence of metabolic disorders, such as type 2. The 3 PPAR
isoforms (alpha, delta/beta and gamma) are known to control many physiological functions including glucose absorption, lipid balance, and cell growth and
differentiation. The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of lipid and glucose metabolism. Peroxisome proliferator-
activated receptor gamma (PPARγ) has become an attractive molecular target for drugs that aim to treat diabetes mellitus type 2, and its therapeutic potency
against skin cancer and other skin diseases is also currently being explored.

We have developed a virtual screening procedure based on ligand-based pharmacophore construction based on known drugs of type 2 diabetes and
protein-ligand docking to discover novel scaffolds of (PPARγ) partial agonists. A dataset consisting of approximately 5,00,000 small molecule natural compounds
were downloaded in (SDF) format from ZINC database. It was used as an input in the Generate phase database panel of phase. The structures were cleaned and
different conformations were generated for each compound along with defining the pharmacophore sites points for each. The database prepared was then used to
screen potential diabetes mellitus type 2. Structure and ligand based approach of drug designing is used for analysis for that some inhibitor molecules have been
taken for docking by using the software GLIDE (Grid-based Ligand Docking with Energetics), run under Schrodinger’s Job Control facility by taken known protein
structure from PDB (1NYX) .The predicted inhibitors are quite novel compared with the Known (PPARγ) inhibitor. The work provides insight for molecular
understanding of (PPARγ) and can be used for development of anti-diabetes drugs.
Keywords: PPARγ, ZINC database, Schrodinger, PDB.

INTRODUCTION

Diabetes mellitus (DM) is a metabolic syndrome that

constitutes a major health problem. It is estimated that 246

million people worldwide have diabetes and 380 million

people will be afflicted with diabetes by 2025 [1]. In

addition, 3.8 million people died each year from diabetes
[2]. DM is characterized by abnormally high levels of plasma

glucose, known as hyperglycemia, in the fasting state or

after the administration of glucose during an oral glucose

tolerance test. DM is caused by a relative or absolute

deficiency in insulin secretion, a resistance to insulin secretion

or both [3]. The World Health Organization recognizes two

distinct clinical forms of diabetes (Figure 1), type 1 diabetes

(T1DM) and type 2 diabetes (T2DM). T1DM, also referred to

as the juvenile variety of DM, results from an absolute

deficiency of insulin due to the destruction of insulin-
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producing pancreatic β-cells. T2DM is a multifactorial

disease that is characterized by insulin resistance associated

with not only hyperinsulinaemia and hyperglycemia but also

atherosclerosis, hypertension and an abnormal lipid profile
[4]. T2DM accounts for 90-95% of the diagnosed cases of

DM [8]. Genetic and environmental factors, increased height

and weight development, increased maternal age at

delivery, and exposure to some viral infections have also

been linked to the risk of developing T1DM. Several risk

factors have been associated with T2DM, including obesity,

changes in diet and physical activity, age, insulin resistance,

a family history of diabetes and ethnicity [5]. Changes in diet

and physical activity related to rapid development and

urbanization have led to a sharp increase in the number of

people developing diabetes [6].

T1DM and T2DM require careful monitoring and control.

Without proper management, they can lead to very high

blood sugar levels, which can result in long-term damage to

various organs and tissues. The major chronic complications of

diabetes are cardiovascular disease, which is the primary

cause of death in people with diabetes [7, 8]; nephropathy,

which can result in total kidney failure and the need for

dialysis or kidney transplant, neuropathy, which can

ultimately lead to ulceration and amputation of the toes, feet

and lower limbs; and retinopathy, which is characterized by

damage to the retina of the eye and can lead to a loss of

vision [9]. Both T1DM and T2DM are chronic conditions that

typically cannot be cured. However, all forms of diabetes

have been treatable since the development of readily

available insulin in 1921. The enhancement of insulin

secretion by pancreatic islet β-cells is a major goal for the

treatment of T2DM. Anti diabetic drugs or hypoglycemic

agents are medications that work to lower blood glucose

concentrations (i.e., the amount of sugar in the blood). There

are different classes of anti diabetic drugs, and their

selection depends on the nature of the diabetes and the age

and situation of the person, as well as other factors.

Antidiabetic drugs exert their useful effects through (1)

increasing insulin levels in the body, (2) increasing the body's

sensitivity (or decreasing its resistance) to insulin, or (3)

decreasing glucose absorption in the intestines [10].

Notably, insulin, which is used to treat T1DM patients (for

whom the hormone is no longer produced internally), is also

occasionally used for patients with T2DM when other

medications fail to adequately control blood glucose levels.

However, hypoglycemia and weight gain are common side

effects. Thus, new approaches are needed to treat T2DM.

One of the desirable approaches to achieve this goal would

be to identify agents that promote/enhance glucose

(nutrient)-dependent insulin secretion. Extensive research has

been conducted on the molecular targets for T2DM, including

PPARγ, protein tyrosine phosphatase-1B (PTP1B), DPP-IV,

glycogen synthase kinase-3 (GSK-3), pyruvate

dehydrogenase kinase (PDHK), cannabinoid receptors,

fructose-bisphosphatases, and β3-adrenoceptor (β3-AR), in

an attempt to develop newer antidiabetic agents [11,12].

These therapeutic targets are important, and most of them

are suitable for an in silico analysis.

PEROXISOME PROLIFERATE-ACTIVATED RECEPTOR

GAMMA (PPARγ):

Peroxisome proliferator-activated receptors (PPARs) are

members of the nuclear receptor super family that regulate

the gene expression of proteins involved in energy, glucose

and lipid metabolism, the proliferation and differentiation of

adipocytes and the sensitivity of insulin [13]. They function as

cellular sensors that activate transcription in response to the

binding of natural or synthetic ligands. Three receptor

subtypes, PPARα, PPARβ/δ and PPARγ, have been

identified. Although the three subtypes share a high level of

sequence and structural homology, they exhibit differences in

tissue expression and physiological function [14]. PPARα is

found in the liver, kidney, heart, and muscle. It is important

for the uptake and oxidation of fatty acids and lipoprotein

metabolism. PPARα is the target of lipid lowering fibrates.

PPARγ is localized in fat, large intestine, and macrophages.

It plays an important role in adipocyte differentiation. PPAR

β/δ is expressed in most cell types. Agonists of PPARα and

PPARγ are currently approved for use in treating

dyslipidemia and T2DM, respectively [15]. PPARβ/δ agonists

play important roles in dyslipidemia, cancer treatment, and

cell differentiation within the central nervous system.

PPARγ agonists: TZDs are an important class of synthetic

PPARγ agonists. TZDs are anti diabetic agents that target

adipose tissue and that improve insulin sensitivity. They are

currently used in the treatment of T2DM. Despite the clinical



Ahmed F. et al., April- May, 2016, 5(3), 2134-2141

©SRDE Group, All Rights Reserved. Int. J. Res. Dev. Pharm. L. Sci. 2136

benefit of these drugs, the use of TZDs has been associated

with adverse effects, including weight gain, increased

adipogenesis, renal fluid retention, and possible increased

incidence of cardiovascular events. Therefore, new PPARγ

ligands with enhanced therapeutic efficacy and reduced

adverse effects are needed. A promising new group of such

ligands are selective PPARγ modulators (SPPARγMs) [16, 17].

These compounds act as partial agonists of PPARγ and

display different binding properties when compared with full

agonists.  There is another type of synthetic PPAR agonists

called dual PPARα/γ and pan PPARα/γ/β/δ ligands. They

were developed in an attempt to achieve multiple

therapeutic benefits; however, these compounds have

encountered multiple safety issues that have thus far not

been resolved [18].

PPARγ mechanism:

PPARs function through the formation of heterodimers with

the retinoid X receptor (RXR) and dock to the promoter

regions of genes, which regulates transcription in a ligand-

dependent manner through the differential recruitment of co-

activators and co-repressors [19]. PPARγ can considered a

rheostat for insulin sensitivity that responds to an integrated

nutritional status conveyed through multiple signals sensitive

to the dietary and endocrine status [20]. Like other nuclear

receptors, PPARs are modular in structure and contain the

following functional domains: a N-terminal region, a DNA-

binding domain (DBD), a flexible hinge region, a ligand

binding domain (LBD) and a C-terminal region. The DBD

contains two zinc finger motifs, which bind to specific

sequences of DNA, known as hormone response elements,

when the receptor is activated. The LBD has an extensive

secondary structure that consists of 13 α-helices and a β-

sheet (see Figure 3A) [21]. Natural and synthetic ligands bind

to the LBD and either activate or repress the trans-activation

activity of the receptor.

Because of their importance as pharmaceutical targets for

regulating the fatty acid metabolism and ant-diabetic drugs

and because they provide an interesting example of

receptors interacting with other molecular partners in a

ligand-dependent manner, the structure of the PPAR LBD has

been intensively studied at the atomic level. Since the first

experimental X-ray structures of PPARγ were obtained in

1998 [22], numerous structures have been determined for

PPARα, PPARγ and PPARδ in both the ligand and apo forms,

with or without a co-activator or a co-repressor, and in the

presence or absence of RXR.

PPARγ is thought to be activated by full agonists via a

molecular switch in the most carboxy terminal helix, H12, of

the LBD. H12 forms part of the ligand-dependent activation

domain AF-2 that closes on the ligand-binding site in

response to ligand binding. The resulting active form can

bind to several co-activator proteins that activate the cellular

transcriptional machinery. Full agonists occupy the large

binding site of PPARγ in a U conformation and are generally

formed by a polar head and a hydrophobic tail. The polar

head forms a net of hydrogen bonds with the Ser 289, His

323, His 449 and Tyr 473 PPARγ side chains. This net of

hydrogen bonds is responsible for the conformational change

of H12 and the activation of PPARγ [23]. Partial agonists,

however, activate PPARγ using a H12-independent

mechanism. The key interactions between partial agonists

and the (LBD) of PPARγ are different, since partial agonists

do not use the net of hydrogen bonds used by full agonists to

bind to PPARγ. This causes a reduction in the degree of H12

stabilization that affects the recruitment of co-activators and

that decreases the transcriptional activity of PPARγ [24]. With

only minor differences, most of the currently described

partial agonists interact with the LBD of PPARγ through a

hydrogen bond with Ser342 and several hydrophobic

interactions (Figure 3C). These hydrophobic interactions are

similar to those used by full agonists. A new mechanism has

been recently suggested by which partial and full PPARγ

agonists may improve insulin sensitivity independent of

receptor agonist. This mechanism consists in blocking the

phosphorylation of PPARγ [25] and may explain how partial

agonists can exhibit similar or higher antidiabetic effects

than full agonists and the differing side-effect profiles of

both types of agonists. These partial agonists may then

achieve comparable efficacy in insulin sensitization through a

similar inhibitory effect on PPARγ phosphorylation whereas

the differences in their agonist potency could be linked to

differences in side effects [26].

In practice, the choice of employing CADD approaches is

usually determined by the availability of experimentally

determined 3D structures of the target proteins. Thus, there
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are two major types of drug design: ligand-based drug

design and structure-based drug design. If protein structures

are unknown, various methods of ligand-based drug design

can be employed, such as quantitative structure activity

relationship (QSAR) and pharmacophore analysis. If the

target structures are known, structure-based approaches can

be used, such as molecular docking, which employs the 3D

structures of the targets to design novel active compounds

with improved potency. As more structures are becoming

available, the prediction accuracy will likely improve [27].

In modern computational biology, pharmacophore based

approach is used to delineate the essential features of one

or more molecules with the same biological activity. The

pharmacophore based modeling of ligands is a well-

established approach to quantitatively discover common

chemical features among a considerable number of

structures. Pharmacophore mapping can be used in designing

the inhibitors in several ways, including justification of activity

trends in molecules, searching of databases to find new

chemical entities and to identify important features for

activity [28]. In this study, the pharmacophoric features of the

inhibitors of PPARγ have been developed. The

pharmacophore based modeling has been carried out to

identify the best features, such as hydro-gen bond acceptor,

donor, aromatic ring, and aliphatic chain for PPARγ, from the

existing drug which facilitates the drug activity for the

identification of novel inhibitors from the natural compound

database. Furthermore, docking and molecular dynamics

(MD) simulation were performed to analyze the binding

affinity of the identified natural compounds.

MATERIAL AND METHODS

Ligand preparation:

A data set of ligand molecules having PPARγ inhibitory

activity were collected from the known drug bank.

(Balsalazide, Indomethacin, Icosapent, Nateglinide,

Mesalazine, Telmisartan, Rosiglitazone, Sulfasalazine,

Repaglinide, Ibuprofen, Glipizide, Pioglitazone, Mitiglinide,

Bezafibrate, Diclofenac and roglitazone are the ligand

taken from the drug bank.) Quantitative pharmacophore was

generated for the molecules based on the diversity of their

chemical structure and biological activity against human

PPARγ inhibitors. The PPARγ inhibitors used in this study were

further energy minimized using Ligprep module of

Schrödinger software. [29] The conformations of the above

structures were generated using the MMFFs force field, with

an implicit GB/SA solvent model. A maximum of 1000

conformers were generated per structure by a preprocess

minimization of 1000 steps using ConfGen algorithm. During

the search, hydrogen-bonding interactions were suppressed

to facilitate con-formations in which the ligand bonds to the

receptor, and not just conformations with internal hydrogen

bonding, as this is essential for the model.

Pharmacophore model generation:

The quantitative pharmacophore model was built using the

Phase software [30]. The diverse dataset were used to

generate the pharmacophore model. A set of

pharmacophore features for the PPARγ inhibitors were

produced using create sites option, which creates the site

points for each con-former of the above ligands. A default

setting having acceptor (A), donor (D), hydrophobic (H),

negative (N), positive (P), and aromatic ring (R) features

were used to create pharmacophore sites. Pharmacophore

hypotheses common for the set of active ligands were

generated using these pharmacophore features. Common

pharmacophore are identified from a set of variants, which is

a set of feature type that defines a possible pharmacophore

using a tree based portioning algorithm. The common

pharmacophore hypotheses from the active ligands were

scored by setting the root mean square deviation (RMSD)

value below 1.0, the vector score value to 0.5. Higher

survival score resembles better mapping of the

pharmacophore with the active molecules. Apart from the

survival score, fitness score was also used to confirm the

quality of pharmacophore hypothesis [31].

Database screening:

The developed Pharmacophore hypothesis was further

screened for the ZINC database of natural compounds

holding approximately 5,00000 small molecule natural

compounds was downloaded in (SDF) format from ZINC

database. It was used as an input in the Generate phase

database panel of phase. The structures were cleaned and

different conformations were generated for each compound

along with defining the pharmacophore sites points for each.

The database prepared was then used to screen potential

diabetes mellitus type II and screen for potent inhibitor for

PPARγ. The criteria for finding out the hits was that all the
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five out of five pharmacophoric features must match with

default inter feature distance. ZINC database was scanned

for geometric arrangements of pharmacophore sites that

match the above generated hypothesis within a tolerance

applied to the intersite distances. Molecules with fitness score

above 1 were taken for docking studies.

Glide ligand docking:

Glide module was used to perform docking of the ligands to

PPARγ with crystal structures, the PDB ID: 1NYX was chosen,

and may be use-full starting point for drug design. Protein

was prepared using protein preparation wizard which

assigns bond order and adds hydrogen. The active site of

the protein was defined using default parameters of

receptor grid generation. Ligands were energy minimized

using the Ligprep module. Docking was performed using XP

docking mode (Extra Precision). The results of the docking

were then quantified in terms of the Glide score and Glide

energy.

RESULTS AND DISCUSSION

Pharmacophore model generation:

This study is aimed to screen inhibitors for PPARγ which plays

a major role in Diabetes mellitus. Ligand based drug

designing approach is employed to identify the novel

molecules against PPARγ. The PPARγ inhibitors used to

generate the pharmacophore model and ligands taken for

this study include Balsalazide, Indomethacin, Icosapent,

Nateglinide, Mesalazine, Telmisartan, Rosiglitazone,

Sulfasalazine, Repaglinide, Ibuprofen, Glipizide,

Pioglitazone, Mitiglinide, Bezafibrate, Diclofenac and

roglitazone. Only the active compounds are considered when

developing common pharmacophore hypotheses. Using tree

based partition algorithm with maximum tree depth of five, a

list of 10, four featured hypotheses from the variant list were

generated. All these variants were selected to find the

common pharmacophore among the diabetes mellitus (DM)

inhibitors.

Table 1: The best 5 common pharmacophore hypotheses with survival active scores .

Hypothesis Survival Active Site Matches

ADHR.22 3.138 0.67 4

ADHR.85 3.124 0.73 4

ADHR.70 3.103 0.68 4

ADHR.60 3.081 0.71 4

ADHR.20 3.045 0.7 4

Figure 2: The best generated pharmacophore model ADHR.22, developed using Phase module.
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Table 2: The low energy conformations of each ligand were selected for docking against protein.

File name No of structure No of hits No of hits taken

3_p0.1.sdf 500000 28000 251

Table 3: Few Fitness scores and matched ligand sites for the ligand based hits.

Title Num Sites Matched Matched Ligand Sites Fitness Potential Energy-OPLS-2005

ZINC31820319 4 A(3) D(8) H(9) R(14) -0.72524 143.165

ZINC77488580 4 A(2) D(6) H(7) R(11) -0.70322 185.526

ZINC95453515 4 A(2) D(5) H(6) R(9) -0.24513 146.035

ZINC25763854 4 A(5) D(6) H(7) R(10) -0.72942 232.833

ZINC54774978 4 A(3) D(8) H(9) R(11) -0.39903 87.3125

Table 4: Glide docking XP score, Vander wall score, XP H-bond etc, for ligand based hits.

Ligands G Score Lipophilic Vander wall H-Bond Electro Low MW Rot Penal

ZINC22018264 -9.76 -6.17 -0.7 -0.25 -0.29 0.19

Telmisartan -9.63 -6.89 -1.63 -0.51 0 0.2

ZINC00146021 -9.07 -4.56 -1.63 -0.37 -0.5 0.1

ZINC27533573 -8.75 -8.78 -0.43 0.08 0 0.3

ZINC70925337 -8.72 -7.06 -0.65 -0.08 -0.03 0.31

ZINC04235689 -8.56 -7.59 -0.22 -0.24 -0.08 0.33

ZINC35592833 -8.51 -5.3 -1.05 -0.26 -0.34 0.33

ZINC25763854 -8.34 -6.06 -0.7 -0.26 -0.1 0.29

ZINC35592840 -8.2 -5.65 -0.97 -0.34 -0.37 0.35

ZINC59513055 -8.01 -5.6 -0.96 -0.19 0 0.22

ZINC81622109 -7.93 -5.2 -1.05 -0.41 -0.42 0.53

ZINC64705034 -7.9 -5.86 -0.44 -0.22 -0.41 0.3

Table 5: Hydrogen Bond Analysis.

Ligands Amino acid No of H-bond H-bond distance(A)

ZINC22018264 LEU340 1 1.766

Telmisartan 2 1.947, 2.085

ZINC00146021 LEU 340, ILE 281 2 2.046, 1.920

ZINC27533573 TYR327 1 2.253

ZINC70925337 SER342, ARG288 2 2.130, 2.621

ZINC04235689 HIP323 1 2.042

ZINC35592833 ARG288, SER342 2 1.925, 2.087

ZINC25763854 CYS285 1 1.952

ZINC35592840 ILE281, GLU343 2 2.305, 2.139

ZINC59513055 TYR327 1 1.857

ZINC81622109 CYS285, ARG288 2 2.012, 1.751

ZINC64705034 SER342 1 2.119
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A summary of statistical data of best 5 common

pharmacophore with survival score is listed in Table 1.

Pharmacophore hypothesis named ADHR.22 has the best

survival score of 3.138. The pharmacophore features present

in this hypothesis have one accepter, one donor, one

hydrogen bond, and one ring aromatic regions which are

shown in Fig. 2.

Pharmacophore screening:

The best hypothesis ADHR.22 was used as a 3D query for

retrieving the 5,00,000 active molecules from ZINC

database using Phase software. The virtual screening of

ZINC database has yielded several hits (Table-2) by

matching the predicted hypotheses ADHR.22 to the ligand

sites of the ZINC database and ranks the molecules based on

the fitness score. The fitness scores and matched ligand sites

for the few ZINC molecules were listed (Table 3). Apart from

ZINC molecules, the known highly active from the dataset

were taken to compare the binding modes with the receptor

PPARγ.

Docking of ligands to PPARγ:

XP ligand docking was performed for the ligand molecules

using the Glide module from the Maestro package. The best

compounds were selected based on the glide score and its

interaction with amino acid residues. Interestingly known

active ligands were found to have lesser docking score

compared to novel natural compounds. The 245 hits obtained

from databases were docked with the PPARγ protein to

predict their binding affinities and PPARγ inhibiting activity.

Twelve compounds including one approved drug were

shortlisted from the huge list of hits using extra precision

docking of these small molecules against the active site of

PPARγ. By this docking study we came to know that most of

our designed ligands are interacting to various proteins with

sufficient selectively and specificity. The docking analysis is

done and the results are presented in the form of table given

in (Table 4) and hydrogen bond interactions between

receptor and ligands, given in the (Table 5).

CONCLUSION

PPARγ is an important protein in the process of improving,

increasing prevalence of metabolic disorders, such as type 2

diabetes. Pharmacophore modeling for the PPARγ inhibitors

was performed and four featured pharmacophore

hypotheses were developed. A four point pharmacophore

with one accepter, one donor, one hydrogen bond, and one

ring aromatic regions including high survival score were

predicted. This pharmacophore hypothesis is further used to

screen the natural ZINC compound database for the

identification of potential PPARγ inhibitors. From in silico

studies, twelve compounds including one known approved

drug were shortlisted from the huge list of hits using extra

precision docking of these small molecules against the active

site of PPARγ. These compounds were shown to possess high

binding affinity for the PPARγ active site. Thus, these

compounds can be considered as potential PPARγ inhibitors

for the treatment of diabetes.
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